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ABSTRACT

We report on the construction of a real-time computer system
capable of distinguishing speech signals from music signals over
a wide range of digital audio input. We have examined 13 fea-
tures intended to measure conceptually distinct properties of speech
and/or music signals, and combined them in several multidimen-
sional classification frameworks. We provide extensive data on
system performance and the cross-validated training/test setup used
to evaluate the system. For the datasets currently in use, the best
classifier classifies with 5.8% error on a frame-by-frame basis, and
1.4% error when integrating long (2.4 second) segments of sound.

1. OVERVIEW

The problem of distinguishing speech signals from music signals
has become increasingly important as automatic speech recogni-
tion (ASR) systems are applied to more and more “real-world”
multimedia domains. If we wish to build systems that perform
ASR on soundtrack data, for example, it is important to be able to
distinguish which segments of the soundtrack contain speech.

There has been some previous work on this topic [1], [2]. Some
of this work has suggested features which prove valuable for incor-
poration into a multidimensional framework, and we have included
them when possible. This paper extends that work in several ways:
by considering multiple features, by examining powerful classifi-
cation methods, and by describing a principled approach to training
and testing the system.

The rest of our paper is divided into three sections: a description
of the features examined in our system; a discussion of the different
multivariate classification frameworks which we have evaluated;
and results of a careful training and evaluation phase in which we
present the performance characteristics of the system in its current
state.

2. FEATURES

Thirteen features have been evaluated for use in the system. Each
of them was intended to be a good discriminator on their own; as
we shall show, not all of them end up adding value to a multivariate
classifier. Of the thirteen, five are “variance” features, consisting
of the variance in a one-second window of an underlying measure
which is calculated on a single frame. If a feature has the property
that it gives very different values for voiced and unvoiced speech,
but remains relatively constant within a window of musical sound,
then the variance of that feature will be a better discriminator than
the feature itself.

It is also possible that other statistical analyses of “underlying”
features, such as second or third central moments, skewness, kur-
tosis, and so forth, might make good features for discriminating
classes of sound. For example, Saunders [2] bases four features on�Eric Scheirer is currently at the MIT Media Laboratory, Cambridge,
MA, USA, eds@media.mit.eduyMalcolm Slaney can be reached at malcolm@interval.com

the zero-crossing rate, using the variance of the derivative, the third
central moment, the thresholded value, and a skewness measure.

The features used in this system are:� 4 Hz modulation energy: Speech has a characteristic energy
modulation peak around the 4 Hz syllabic rate [3]. We use a
portion of the MFCC algorithm [4] to convert the audio signal
into 40 perceptual channels. We extract the energy in each
band, bandpass filter each channel with a second order filter
with a center frequency of 4 Hz, then calculate the short-term
energy by squaring and smoothing the result. We normalize
each channel’s 4 Hz energy by the overall channel energy in
the frame, and sum the result from all channels. Speech tends
to have more modulation energy at 4Hz than music does.� Percentage of “Low-Energy” Frames: The proportion of
frames with RMS power less than 50% of the mean RMS
power within a one-second window. The energy distribution
for speech is more left-skewed than for music—there are more
quiet frames—so this measure will be higher for speech than
for music [2].� Spectral Rolloff Point: The 95th percentile of the power spec-
tral distribution. This measure distinguishes voiced from un-
voiced speech—unvoiced speech has a high proportion of en-
ergy contained in the high-frequency range of the spectrum,
where most of the energy for unvoiced speech and music is
contained in lower bands. This is a measure of the “skewness”
of the spectral shape—the value is higher for right-skewed
distributions.� Spectral Centroid: The “balancing point” of the spectral
power distribution. Many kinds of music involve percussive
sounds which, by including high-frequency noise, push the
spectral mean higher. In addition, excitation energies can be
higher for music than for speech, where pitch stays in a fairly
low range. This measure gives different results for voiced and
unvoiced speech.� Spectral “Flux” (Delta Spectrum Magnitude): The 2-norm
of the frame-to-frame spectral amplitude difference vector,kjXij � jXi+1jk. Music has a higher rate of change, and goes
through more drastic frame-to-frame changes than speech
does; this value is higher for music than for speech. Note
that speech alternates periods of transition (consonant - vowel
boundaries)and periods of relative stasis (vowels), where mu-
sic typically has a more constant rate of change. This method
is somewhat similar to Hawley’s, which attempts to detect
harmonic continuity in music [1].� Zero-Crossing Rate: The number of time-domain zero-
crossings within a speech frame [2]. This is a correlate of
the spectral centroid. Kedem [5] calls it a measure of the
dominant frequency in a signal.� Cepstrum Resynthesis Residual Magnitude: The 2-norm of
the vector residual after cepstral analysis, smoothing, and
resynthesis. If we do a real cepstral analysis [6] and smoothing
of the spectrum, then resynthesize and compare the smoothed
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to unsmoothed spectrum, we’ll have a better fit for unvoiced
speech than for voiced speech or music, because unvoiced
speech better fits the homomorphic single-source-filter model
than music does. In the voiced speech case, we are filtering
out the pitch “ripple” from the signal, giving higher values for
the residual.� Pulse metric: A novel feature which uses long-time band-
passed autocorrelations to determine the amount of “rhyth-
micness” in a 5-second window. It does a good job telling
whether there’s a strong, driving beat (ie, techno, salsa,
straightahead rock-and-roll) in the signal. It can’t detect
rhythmic pulse in signals with rubato or other tempo changes.
The observation used is that strong beat leads to broadband
rhythmic modulation in the signal as a whole. That is, no
matter what band of the signal you look in, you see the same
rhythmic regularities. So the algorithm divides the signal into
six bands and finds the peaks in the envelopes of each band;
these peaks correspond roughly to perceptual onsets. We
then look for rhythmic modulation in each onset track using
autocorrelations, and select the autocorrelation peaks as a
description of all the frequencies at which we find rhythmic
modulation in that band.
We compare band-by-band to see how often we find the same
pattern of autocorrelation peaks in each. If many peaks are
present at similar modulation frequencies across all bands, we
give a high value for the pulse metric.

We use the variances of the rolloff point, spectral centroid, spec-
tral flux, zero-crossing rate, and cepstral resynthesis residual mag-
nitude as features as well. In practice, we are using log transforma-
tions on all thirteen features; this has been empirically determined
to improve their spread and conformity to normal distributions.
As an example, Figure 1 shows two of the features and their two-
dimensional joint distribution. As we can see, there is significant
overlap in the marginal probability distributions, but much less
when the features are considered in conjunction.

3. CLASSIFICATION FRAMEWORKS

We have examined a multidimensional Gaussian maximum a pos-
teriori (MAP) estimator, a Gaussian mixture model classification,
a spatial partitioning scheme based on k-d trees, and a nearest-
neighbor classifier in depth. We will describe them here and con-
trast the way they divide the feature space; we will provide data for
performance comparison in the Evaluation section.

Multidimensional MAP Gaussian classification works by mod-
eling each class of data, speech and music, as a Gaussian-shaped
cluster of points in feature space (for example, the 13-dimensional
space consisting of the parameters described above). We form
estimates of parameter mean and covariances within each class in
a supervised training phase, and use the resulting parameter es-
timates to classify incoming samples based on their proximity to
the class means using a Mahalanobis, or correlational, distance
measurement.

A Gaussian mixture model (GMM) models each class of data as
the union of several Gaussian clusters in the feature space. This
clustering can be iteratively derived with the well-known EM algo-
rithm [7]. In contrast to the MAP classifier, the individual clusters
are not represented with full covariance matrices, but only the diag-
onal approximations. That is, the resulting Gaussian “blobs” have
their axes oriented parallel to the axes of the feature space.

Classification using the GMM uses a likelihood estimate for each
model, which measures how well the new data point is modeled
by the entrained Gaussian clusters. An incoming point in feature
space is assigned to whichever class is the best model of that point
(whichever class the point is most likely to have come from).

The nearest-neighbor estimator simply places the points of the
training set in feature space. To classify new points, we examine
the local neighborhoodof feature space to determine which training
point is closest to the test point, and assign the class of this “nearest
neighbor”. Spatial partitioning schemes [8] are often used to make
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Figure 1. Marginal and joint probability distributions for two of
the features examined in the system. The darker density cloud and
histogram outline represent speech data; the lighter, music data.
The ellipses are contours of equal Mahalanobis distance at 1 and 2
standard deviations. The data shown are a random sample of 20%
of the training data. Each axis has been log-transformed.

more efficient the process of determining which point in the training
is the closest; we are using the k-d tree algorithm.

We have also investigated several common variants of the sim-
ple nearest-neighbor framework. The k-nearest-neighbor classifier
conducts a class vote among the nearest k neighbors to a point;
what we call k-d spatial classification approximates the k-nearest-
neighbor approach by voting only among those training points in
the particular region of space grouped together by the k-d tree parti-
tioning. These points are nearby each other, but are not necessarily
strictly the closest neighbors. This approximate algorithm is much
faster than the true nearest-neighbor schemes.

The difference between the power of these classification schemes
is obvious when the partition boundaries are considered. The
Gaussian model creates a hyper-quadric surface boundary in the
feature space (ie, hypersphere, hyperellipsoid, hyperparaboloid,
etc). The Gaussian mixture model induces a decision boundary of
a union of hyper-quadrics, where each hyper-quadric is oriented
with the axes of the feature space.

The k-d spatial partitioning draws arbitrary “Manhattan seg-
ment” decision boundaries, whose complexity depends on the
amount of training data and number of partitioning “bins”. The
nearest-neighbor and k-nearest schemes are attempting to estimate
the local probability density within every area of the feature space,
and so arbitrarily complex decision boundaries can be drawn, de-
pending on the manifold topology of the training data.

Returning to Figure 1, we can see that Gaussians (or, perhaps,
the union of a small number of Gaussians) are not a bad model
for the individual features, but the joint distribution is not so easily
described. In particular, there are clear locations in space where
the data distribution is somewhat homogeneous—for example,near
the point (�1; 3:5) on the scatter plot—that do not fall into the
main cluster regions.

We can estimate theoretical bounds on the performance of some
classifiers. The estimated class assignment probability densityP (wijx) given by the nearest-neighbor rule is no greater than
2P �, where P � is the underlying probability (see [9] p.100-102
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CPU
Feature Latency Time Error
4 Hz Mod Energy 1 sec 18 % 12 �1.7 %
Low Energy 1 sec 2 % 14 �3.6 %
Rolloff 1 frame 17 % 46 �2.9 %
Var Rolloff 1 sec 17 % 20 �6.4 %
Spec Cent 1 frame 17 % 39 �8.0 %
Var Spec Cent 1 sec 17 % 14 �3.7 %
Spec Flux 1 frame 17 % 39 �1.1 %
Var Spec Flux 1 sec 17 % 5.9 �1.9 %
Zero-Cross Rate 1 frame 0 % 38 �4.6 %
Var ZC Rate 1 sec 3 % 18 �4.8 %
Ceps Resid 1 frame 46 % 37 �7.5 %
Var Ceps Res 1 sec 47 % 22 �5.7 %
Pulse Metric 5 sec 38 % 18 �2.9 %

Table 1. Latency, CPU time required, and univariate discrimination
performance for each feature. Each data point represents the mean
and standard deviation of the proportion of frames misclassified
over 10 cross-validated training runs. See text for details on testing
procedure. CPU time is proportion of “real time” a feature takes
for processing on a 120MHz R4400 Silicon Graphics Indy work-
station. Note that many features can share work when classifying
multidimensionally, so the total CPU time required is nonadditive.

for details on this derivation). This bound tells us that no matter
what classifier we use, we can never do better than to cut the error
rate in half over the nearest-neighbor classifier (and, in fact, thek-nearest-neighbor method is even more strictly bound), assuming
our testing and training data are representative of the underlying
feature space topology. Any further improvements have to come
from using better features, more or better training data or by adding
higher-level knowledge about the long-term behavior of the input
signal.

4. TRAINING, TESTING, AND EVALUATION

We evaluated the models using labeled data sets, each 20 minutes
long, of speech and music data. Each set contains 80 15-second-
long audio samples. The samples were collected by digitally sam-
pling an FM tuner (16-bit monophonic samples at a 22.05 kHz
sampling rate), using a variety of stations, content styles, and noise
levels, over a three-day period in the San Francisco Bay Area.

We made a strong attempt, especially for the music data, to
collect a data set which represented as much of the breadth of
available input signals as possible. Thus, we have both male and
female speakers, both “in the studio” and telephonic, with quiet
conditions and with varying amounts of background noise in the
speech class; and samples of jazz, pop, country, salsa, reggae,
classical, various non-Western styles, various sorts of rock, and
new age music, both with and without vocals, in the music class.

For each classification model and several different subsets of
features, we used a cross-validated testing framework to evaluate
the classification performance. In this method, 10% (4 min.) of
the labeled samples, selected at random are held back as test data,
and a classifier trained on the remaining 90% (36 min.) of the data.
This classifier is then used to classify the test data, and the results
of the classification are compared to the labels to determine the
accuracy of the classifier. By iterating this process several times
and evaluating the classifierbased on the aggregate average, we can
ensure that our understanding of the performance of the system is
not dependent on the particular test and training sets we have used.

Note that we are selecting or holding back blocks of points
corresponding to whole audio samples; the frames from a single
speech or music case will never be split into partially training and
partially testing data. This is important since there is a good deal
of frame-to-frame correlation in the sample values, and so splitting
up audio samples would give an incorrect estimate of classifier
performance for truly novel data.

Speech Music Total
Framework Error Error Error

MAP G’ss’n 2.1 �1.2 % 9.9 �5.4 % 6.0 �2.6 %
GMM: 1 G 3.0 �1.1 % 8.7 �6.6 % 5.8 �2.9 %

5 G 3.2 �1.1 % 8.4 �6.8 % 5.8 �2.9 %
20 G 3.4 �1.5 % 7.7 �6.2 % 5.6 �2.4 %
50 G 3.0 �1.4 % 8.2 �6.6 % 5.6 �2.6 %kNN: k = 1 4.3 �1.7 % 6.6 �6.4 % 5.5 �3.6 %k = 5 4.2 �1.8 % 6.4 �6.2 % 5.3 �3.5 %k = 11 4.2 �1.9 % 6.5 �6.1 % 5.4 �3.5 %k = 25 4.2 �1.9 % 6.5 �6.1 % 5.4 �3.5 %

k-d: b = 5 5.2 �1.0 % 6.1 �2.5 % 5.7 �1.5 %b = 11 5.4 �1.1 % 6.1 �2.8 % 5.8 �1.6 %b = 21 5.7 �1.4 % 5.9 �2.9 % 5.8 �1.9 %b = 51 5.9 �1.8 % 5.5 �2.7 % 5.7 �2.0 %b = 101 6.1 �1.7 % 5.3 �2.6 % 5.7 �1.8 %

Table 2. Performance (mean and standard deviation frame-by-
frame error) for various multidimensional classifiers. For the k-d
spatial classifier, the b parameter is the number of data points in the
“leaves” of the data structure, and thus the spatial resolution of the
classifier. A higher b value represents larger bins, and more samples
to vote among in each bin. Note that GMM with one Gaussian is
not the same as MAP, as GMMs use diagonalized covariances only.

We have used this cross-validation framework to evaluate the
univariate and multivariate classification performance of the vari-
ous models. The results are shown in Tables 1 and 2 respectively.

In Table 1, “latency” refers to the amount of past input data
required to calculate the feature. Thus, while the zero-crossing
rate can be calculated on a frame-by-frame basis, the variance
of the zero-crossing rate is referring to the last second of data.
The frame rate was 50 Hz for the performance measures shown
here. The effect of varying the frame size and window overlap
on classification performance has not been examined, but is not
expected to be large. The error rates are calculated using a spatial
partitioning classifier.

In Table 2, performance differences between the classifiers and
the effects of parameter settings for the parameterized classifiers
are examined. For the k-nearest-neighbor classifiers, we varied the
number of neighbors involved in the voting. For the k-d spatial
classification procedure, we varied the number of data points col-
lected in each data “bucket” or “leaf”. Thus, higher values of b
partition the feature space into broader groups. For the Gaussian
mixture model classifier, we varied the number of Gaussians in
each class.

Several results are apparent upon examination of Table 2. First,
there is very little difference between classifiers, or between pa-
rameter settings for each classifier type. This suggests that the
topology of the feature space is rather simple, and indicates the use
of a computationally simple algorithm such as spatial partitioning
for use in implementations. Second, it is generally more difficult
to classify music than to classify speech; that is, it is easier to
avoid mistaking music for speech than to avoid mistaking speech
for music. This is not unexpected, as the class of music data, in the
world and in our data set, is much broader than the class of speech
samples.

Further, some of the classifiers differ in their behavior on the
individual speech and music classes. For example, the MAP Gaus-
sian classifier does a much better job rejecting music from the
speech class than vice-versa, while the k-d spatial classifier with
medium-sized buckets has nearly the same performance on each
class. Thus, the different classifiers might be indicated in situations
with different engineering goals.

We also tested several feature subsets using the spatial partition-
ing classifier; the results are summarized in Table 3. The “best
8” features are the variance features, plus the 4 Hz modulation,
low-energy frame percentage, and pulse metric. The “best 3” are
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Figure 2. Classifications by trial and frame for one training/test
partitioning of the data set. Each white point is a frame classified as
music; each black point is a frame classified as speech. The trials
in the upper region (trials 1-20) correspond to speech samples
(although the classifier doesn’t know); the bottom trials are music.
Trials 9 and 11 are speech with background music and were not
used in the other experiments. The high error rate in the first 50
frames is due to the use of low-latency features only.

the 4 Hz energy, variance of spectral flux, and pulse metric. The
“fast 5” features are the 5 basic features which look only at a single
frame of data, and thus have low latency.

We can see from these results that not all features are necessary
to perform accurate classification, and so a real-time system may
gain improved performance by using only some of the features.

We can understand more fully the behavior of the algorithm by
examining the distribution of errors. Figure 2 shows the classifi-
cations of test frames for one training/test partitioning. A number
of features are apparent in this plot. First, there is a trial-by-trial
difference; some samples are easy to classify, and some hard. This
is true of both the speech region and the music region. Second, the
errors are not independently distributed; they occur in long “runs”
of misclassified frames. Finally, there are many more errors made
in the early startup (frames 1-50), before the variance features can
be collected, than in the later regions.

Finally, for comparison with results reported previously [2], we
calculated a long-term classification by averaging the results of
the frame-by-frame spatial partitioning classification in nonover-
lapping 2.4 second windows. Using this testing method, the error
rate drops to 1.4%. Thus, the frame-by-frame errors, while not
distributed independently, are separate enough that long-term av-
eraging can eliminate many of them.

Speech Music Total
Subset Error Error Error

All features 5.8 �2.1 % 7.8 �6.4 % 6.8 �3.5 %
Best 8 6.2 �2.2 % 7.3 �6.1 % 6.7 �3.3 %
Best 3 6.7 �1.9 % 4.9 �3.7 % 5.8 �2.1 %

VSFlux only 12 �2.2 % 15 �6.4 % 13 �3.5 %
Fast 5 33 �4.7 % 21 �6.6 % 27 �4.6 %

Table 3. Performance (mean and standard deviation frame-by-
frame error) for various subsets of features. The k-d spatial clas-
sifier was used in all cases. The “Var Spec Flux only” data is not
directly comparable to that in Table 1, since in Table 1 “cannot
classify” points were ignored, but here they are treated as errors.

5. CONCLUSION
The multidimensional classifiers we have built provide excellent
and robust discrimination between speech and music signals in
digital audio. We note especially that the performance results
presented are causal error,and so segmentation performance,where
we know a priori that there are long stretches of alternating speech
and music, would be significantly higher.

There are many interesting directions in which to continuing
pursuing this work. For example, a simple three-way classifier
using this feature set to discriminate speech, music, and simulta-
neous speech and music provided only about 65% accurate perfor-
mance. Also, it does not seem as though this feature set is adequate
to distinguish among genres of music. More research is needed
on the methods humans use to solve these sorts of classification
problems, and how to best implement those or other strategies in
pattern-recognition systems.
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